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Study of the Performance of Acoustic Barriers for 
Indiana Toll Roads 

Introduction  
A recent study of traffic noise from the Indiana 
Toll Road in Lake and Porter Counties was 
conducted by the Indiana Department of 
Transportation (INDOT).  This study indicated 
that in several areas, the noise levels at 152.4 m 
from the road will exceed the residential noise 
criterion of 67 dBA in the year 2020. The 
situation is particularly critical near the section 
starting at the Service Plaza and extending 
eastward through the Willow Creek Toll Plaza.  
The Service Plaza on either side of the road 
near the west end of this segment is an 
important source of noise due to the 
acceleration and deceleration of the vehicles 
that use this facility.  
 
It was pointed out in the INDOT report that 
the construction of noise barriers appears to be 
justified in many areas, including the Portage 
Barrier Plaza.  This assessment is based on 
predictions made using the Federal Highway 
Administration (FHWA) Highway Traffic 
Noise Prediction Model, which takes into 
consideration traffic volume, speed, and truck 
percentage. INDOT's policy states that the 
normal sound reduction needed to justify a 
noise barrier is 7 dB.  The cost of sound 
barriers per benefited receiver is the key factor 
in deciding whether a noise barrier is 
warranted. 

Many suggestions have been made about the 
modification of straight barriers to increase 
their sound attenuation performance and cost 
effectiveness.  It has been suggested that the 
use of complex barrier-top maybe useful, and 
prototypes have been installed along highway 
in some countries. The application of sound 
absorptive material to barriers was also 
studied as a way of maximizing barrier 
performance with limited vertical height. The 
current estimate of barrier cost is $20 per 
square foot installed. The INDOT has placed 
the accepted cost per benefited receiver in the 
$20,000 to $30,000 range. The barrier cost is 
therefore directly proportional to its height. 
Noise barriers with improved designs may 
achieve satisfactory performance for lower 
barrier heights, which would translate into 
significant cost savings. 
 
The purpose of this study was to develop 
reliable boundary element models that could 
be used to predict the performance of barrier 
having complex geometries. The boundary 
element method has significant advantages 
over methods based on a geometrical 
diffraction approach. The main advantage of 
the boundary element method is its ability to 
handle arbitrarily shaped barriers.

Findings  
Contributions of the study include the 
following: 
 

1.  A boundary element model for the simple 
geometry of the circular disk was verified 
against experimental results. Later, it was 
shown that the shape of the disk geometry 
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alters the insertion loss at particular receiver 
location, a finding that was verified using 
the numerical model. However, the shaped 
disks did not result in any significant 
advantage compared to the uniform disk 
when the sound power in the shadow was 
used as a metric for barrier performance 
rather than the single point insertion loss. It 
was suggested as a result of these findings 
that the performance of a barrier having a 
relatively complicated geometry can be 
quantified most effectively by using a sound 
power-based metric. 
 
2.  Scale models that were intended to 
represent highway noise barrier applications 
were considered next. A two-dimensional 
analysis was first performed to study the 
limitations of the widely used diffraction-
based model. The performance of the finite 
length barrier was studied both with a 
boundary element model and with 
experiments. A post-processing technique 
that involves windowing in the time domain 
and filtering in frequency was successfully 
implemented to eliminate experimental 
errors. 
 

3.  The performance of various barrier 
configurations was compared. The 
performance of T-shaped barriers was 
compared with that of the equivalent 
straight barriers with extended height. It 
was found that the T-shaped barrier does 
not give a significant improvement over the 
simple extended barrier. The use of 
acoustical treatment on the top of the T-
shaped was also examined. It was found 
that the sound absorptive material results in 
improved insertion loss, but mostly at high 
frequencies. 
 
4.  The use of sound absorptive material to 
extend the barrier height was considered, as 
were the effects of material positioning and 
overlap. It was found that sound absorptive 
treatments placed on the barrier edge are 
very effective at increasing the insertion loss 
at receiver locations in the shadow zone 
behind the barrier. It was illustrated that a 
glass fiber extension was more effective than 
a rigid extension of the same height, for 
example. In contrast, the use of complex 
barrier-tops built of rigid materials, a T-
shaped top, for example, did not result in a 
significant enhancement of the noise barrier 
performance. 

.  

Implementation  
Boundary element models were developed 
first for the simple geometry of a circular 
disk to solve the diffraction problem that is 
the key in highway noise barrier analysis.  
Experiments in an anechoic chamber were 
used to verify the results from the numerical 
models.  After this verification, boundary 
element models were employed to predict 
the performance of various disks with 
complicated edge geometries to study the 
effect of an obstacle’s shape on barrier 
performance.  It was found out that 
complex-shaped barriers do not necessarily 
offer any net performance benefit when 
compared with an equivalent uniform 
barrier.  However, it would be worthwhile 
to develop the boundary element model for 
the scaled barrier to verify this finding if 
sufficient computational resources are 
available.  

 
Scale models that were intended to 
represent highway noise barrier applications 
were considered.  Experiments were 
performed first to test the post-processing 
technique that involves windowing in the 
time domain and filtering in frequency for 
the straight barrier of the finite length. 
 
The performance of various barrier 
configurations was experimentally investigated.  
This investigation shows that a T-shaped barrier 
does not yield a significant performance 
improvement over the simple extended barrier.  
The use of acoustical treatment on the top of the 
T-shaped was found to improve the insertion 
loss, but mostly at high frequencies.  It was found 
that sound absorptive treatment placed on the 
barrier edge is very effective at increasing the 
insertion loss at receiver locations in the shadow 
zone behind the barrier.  The development of 
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more sophisticated numerical modeling tools is 
required to predict the performance of noise 
barriers when sound absorptive treatments 
without a hard backing are applied to otherwise 

rigid barrier structures to predict the performance 
of this configuration and to optimize the shape of 
porous material on the edge of the rigid barriers.   
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1. IMPLEMENTATION REPORT

Boundary element models were developed first for the simple geometry of a circular

disk to solve the diffraction problem that is the key to highway noise barrier analysis.

Experiments in an anechoic chamber were used to verify the results from the numerical

models. After this verification, boundary element models were employed to predict

the performance of various disks with complicated edge geometries to study the effect

of an obstacle’s shape on barrier performance. It was found that complex-shaped

barriers do not necessarily offer any net performance benefit when compared with an

equivalent uniform barrier. However, it would be worthwhile to develop the boundary

element model for the scaled barrier to verify this finding if sufficient computational

resources are available.

Scale models that were intended to represent highway noise barrier applications

were considered. Experiments were performed first to test the post-processing tech-

nique that involves windowing in the time domain and filtering in frequency for the

straight barrier of the finite length.

The performance of various barrier configurations was experimentally investigated.

This investigation shows that a T-shaped barrier does not yield a significant perfor-

mance improvement over a simple extended barrier. The use of acoustical treatment

on the top of the T-shaped was found to improve the insertion loss, but mostly at high

frequencies. It was found that sound absorptive treatment placed on the barrier edge

is very effective at increasing the insertion loss at receiver locations in the shadow

zone behind the barrier. The development of more sophisticated numerical modelling

tools is required to predict the performance of noise barriers when sound absorptive

treatments without a hard backing are applied to otherwise rigid barrier structures

to predict the performance of this configuration and to optimize the shape of porous
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material on the edge of the rigid barriers.

This fact can be utilized to design a new noise barrier in a highway application

which is more cost effective than traditional reflective barrier. It maybe also possible

to design effective treatments that could be retro-fitted to existing barrier installations

to improve their effectiveness in a cost-effective manner.
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2. INTRODUCTION

Noise, defined as unwanted or excessive sound, is an undesirable by-product of mod-

ern life. While noise emanates from many different sources, transportation noise is

especially pervasive and difficult to avoid. There are generally three classes of noise

control methods that may be applied to deal with traffic noise problems: i.e., one may

deal with the noise generated by the vehicles, the noise generated by the interaction

between vehicles tires and the pavement or with the propagation path from the source

to the receiver. The latter approach was considered in this study.

A recent study of traffic noise from the Indiana Toll Road in Lake and Porter

Counties has been conducted by the Indiana Department of Transportation (INDOT)

[1]. This study indicated that in several areas, the noise levels at 152.4 m from the road

will exceed the residential noise criterion of 67 dBA in the year 2020. The situation

is particularly critical near the section starting at the Service Plaza and extending

eastward through the Willow Creek Toll Plaza. The Service Plaza on either side of

the road near the west end of this segment is an important source of noise due to the

acceleration and deceleration of the vehicles that use this facility.

It is pointed out in the INDOT report that the construction of noise barriers

appears to be justified in many areas, including the Portage Barrier Plaza. This

assessment was based on predictions made using the Federal Highway Administration

(FHWA) Highway Traffic Noise Prediction Model, which takes into consideration

traffic volume, speed, and truck percentage. INDOT’s policy states that the sound

reduction needed to justify a noise barrier is 7 dB. The cost of sound barriers per

benefited receiver is the key factor in deciding whether a noise barrier is warranted.

Noise barriers are solid obstructions built between a highway and buildings along

the highway. They are designed to reflect sound away from specific areas. Effective
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noise barriers can reduce noise levels by ten to fifteen decibels within finite regions.

They are usually limited to eight meters in height for structural and aesthetic reasons.

Noise barriers can be built out of wood, stucco, concrete, masonry, metal, and other

materials. Sound barriers have been used extensively to control traffic noise for several

decades. Recent developments in acoustic barrier technology include the study of

wind and thermal gradients effects on barrier performance, the effects of surface

absorption treatments on barrier performance, and the effect of barrier-top geometry

in minimizing scattering into the shadow region. The influence of ground and asphalt

acoustic properties, and the effects of berms and other features of the surrounding

environment on sound propagation are additional factors that play an important role.

Many of these aspects have not yet been taken into consideration in the sound barrier

performance predictions made as part of the INDOT investigations. The only barrier

design parameter considered in the analysis was the barrier height. Non-uniform

geometries, optimal placement, and wind and temperature gradient issues have not

been considered.

Many suggestions have been made about the effective modification of straight bar-

riers. Complex geometries have been suggested and prototypes have been installed

along highway in some countries. The use of sound absorptive material on barriers

was also studied as a way of maximizing barrier performance with limited vertical

height. The current estimate of barrier cost is $20 per square foot, installed. The IN-

DOT has placed the acceptable cost per benefited receiver in the $20,000 to $30,000

range. The barrier cost and therefore the feasibility of a barrier installation is directly

proportional to its height. Noise barriers with improved design may achieve satisfac-

tory performance for lower barrier heights, which would translate into significant cost

savings.

The purpose of this study was first to develop reliable boundary element models

that could be used to predict the performance of barrier having complex geometries.

The boundary element method has significant advantages over methods based on

a geometrical diffraction approach. The main advantage of the boundary element
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method is its ability to handle arbitrarily-shaped barriers. The boundary element

method is also often more accurate than diffraction-based theory since a solution of the

governing wave equation to any required accuracy can be obtained: i.e., for practical

purpose, a boundary element solution is exact while diffraction-based solutions are

always approximate.

The issue of barrier performance metrics was also addressed in this work. In

practice, barrier performance is often quantified using the insertion loss: i.e. the

sound pressure level behind the barrier relative to the sound pressure level at the

same location without the barrier in place. However, the insertion loss should be

used with caution when comparisons are made between different barrier shapes since

it quantifies the barrier performance at only a single point within the shadow zone. It

was shown in the present work that the insertion loss varies significantly from point

to point within the barrier shadow zone, and that this variation makes it difficult to

judge the relative performance of candidate barrier designs. It was suggested that the

sound power propagating through the complete shadow zone behind a barrier could

be a useful metric for quantifying and comparing barrier performance.

In the final part of this work, a comparison was made between the performance of a

straight barrier, a barrier with a T-shaped top, and one with an absorptive treatment

applied to its top. It was found experimentally that for a given barrier height an

absorptive treatment is most effective at reducing the sound level in the shadow zone.

Thus it is suggested that the design and implementation of absorptive barrier top

treatments be pursued in future work. This approach is particularly attractive since

it maybe possible to design effective treatments that could be retro-fitted to existing

barrier installations to improve their effectiveness in a cost-effective manner.
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3. LITERATURE SURVEY

The numerous articles that have appeared in the literature related to noise barrier

design and performance may be categorized as: 1) analytical solutions; 2) empirical

models; and 3) experimental investigations. Each of these topics is considered in

detail below.

3.1 Analytical Solutions for Prediction of Barrier Performance

The first analytical solution for barrier performance was developed late in the 19th

century by Sommerfeld [2]. He considered the case of a harmonic plane wave normally

incident on a rigid half-plane. MacDonald [3] solved the same problem for cylindrical

and spherical incident waves. The solution contains integrals that are related to

an integral representation of the Hankel function. For the case of spherical waves

incident on a rigid half plane, the solution involves exponential functions instead of

Hankel functions. The series solution takes the form of an integral representation

with boundaries extended to infinity.

The classical method for solving partial differential equations by separation of

variables can be applied to the problem of diffraction by a rigid half plane or a wedge.

The solution appears as an infinite series in general. The slow convergence of the

infinite series solution at high frequencies in this case is a well-known problem.

The Fresnel-Kirchhoff assumption which is used extensively in optics can lead to

an approximate, and hence more easily used analytical solution. In this approach it is

assumed that the normal velocity and the pressure on the rear surface of the barrier

are both zero. It is also assumed that the pressure and velocity in the acoustic medium

above the barrier is the same as they would be without the barrier.

Keller [4] used the geometrical theory of diffraction to address the barrier problem.

In addition, Pierce [5] has formulated an approximate solution to the wave equation
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for single-edge diffraction by a semi-infinite wedge. Diffraction-based models such

as these are usually coupled with an approximation to the spherical wave reflection

coefficient at an impedance plane to account for the effect of ground reflections.

The sound field behind the barrier is represented as the sum of terms associated

with different paths (i.e., edge diffraction with and without ground reflection) and a

complex interference spectrum is formed.

Numerical solutions to the barrier problem were primarily developed for the pur-

pose of handling complex barrier geometries. In the case of there being an unbounded

acoustic medium surrounding the noise barrier, there has been extensive use of the

boundary element method, in particular. To produce predictions for configurations

which are complicated in terms of barrier shape and which may also feature ab-

sorptive treatments, the boundary element method is essentially the only practical

option. This method has important advantages over methods based on a geometri-

cal theory of diffraction. A main advantage is its flexibility, in that, by positioning

the boundary elements appropriately, arbitrary barrier shapes and surface acoustic

properties can be accurately represented. Secondly, it has the advantage of accuracy

in that, provided that the boundary elements are made a small enough fraction of

a wavelength, a solution of the governing wave equations can be produced that is

correct to any required accuracy. The disadvantage of the boundary element method

is that large computing time and storage is required, especially for barrier designs

which vary along their length as well as in cross-section. A further limitation which

the boundary element method shares with the diffraction-based methods described

before, is that atmospheric effects are not considered, so that only predictions for a

neutral, quiescent atmosphere can be easily obtained.

Seznec [6] studied the use of the boundary elements techniques which permit

the precise evaluation of the acoustic pressure field diffracted by barriers of differ-

ent shapes on a flat ground. Hothersall [7] also presented numerical results for the

two-dimensional diffraction problems. Duhamel [8] suggested how it is possible to

calculate the three-dimensional sound pressure from solutions of simpler problems
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defined on the two-dimensional domain surrounding the cross-section of the barrier.

Effects of various barrier geometries were studied by Hothersall et al. [9] for barri-

ers with caps having T, Y and arrow shapes following a boundary element approach.

It was found that wide T-shaped caps perform best among these possible designs,

and that the performance of T-shaped barriers can be further enhanced by placing

sound absorbent material on the top surface of the T-top.

Butler [10] suggested lining the region in the immediate vicinity of the edge with

absorbent material to reduce the sound pressure level in the shadow zone. Rawlins

studied the case where the barrier was treated with strips having both infinitely small

impedances [11] and finite impedances [12] based on the Fredholm integral equation.

He showed that a one wavelength wide strip of an absorbent material at the edge of a

half-plane led to the same diffracted field as that which would be provided by a barrier

covered with absorbent material. In 1977, Fujiwara [13] presented a study that dealt

with the excess attenuation of sound pressure level provided by an absorptive material

placed on the surface of the barrier. He reported in 1991 that the installed absorber

reduced the sound pressure level around the edge and improved the sound shielding

efficiency of the noise barrier [14]. Moser [15] employed the acoustic intensity near

the edge of the barrier as well as the insertion loss in the shadow zone to investigate

the influence of the acoustic impedance at the top of the screen. It is interesting to

note, however, that Watts and Godfrey [16] reported that the measured effects of

applying absorptive materials to a roadside barriers were generally less than 1 dB on

the LAeq and LA10 scales and that most recorded changes due to the application of

absorptive treatments were not statistically significant.

3.2 Empirical Models for Barrier Performance

Many theoretical barrier diffraction methods are in fact semi-empirical and are

based on the application of ray-tracing and geometrical acoustics procedures. The

most influential early studies were those of Maekawa [17] and Kurze and Anderson

[18], who developed techniques for predicting the insertion loss of reflecting, sharp-

edged barriers in terms of the Fresnel number (i.e., the ratio of the difference between
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diffracted path length and the direct path length joining the source and receiver and

the wavelength). Maekawa used a spherically spreading pulsed tone of short duration

and measured the diffraction with a thin rigid barrier in a test room. He measured

the sound pressure level in the shadow zone for a variety of frequencies and locations

of source and receiver and was able to normalize the insertion loss in terms of the

Fresnel number.

Kurze and Anderson derived empirical formulae for the sound attenuation by a

thin rigid barrier, utilizing various theoretical and experimental results. The experi-

mental data were taken from the work of Maekawa and Rathe [19] while theoretical

results were taken from Keller’s theory of diffraction [4]. The resulting empirical

formulae have been extensively used in the noise control community.

Traffic noise predictions had been performed using the FHWA approved STAMINA

2.0 highway noise prediction modes, derived from the FHWA Highway Traffic Noise

Prediction Model [20]. The barrier calculations within STAMINA are based on the

Kurze and Anderson equation. In 1998, the FHWA released its new generation

highway traffic noise prediction model called the Traffic Noise Model or TNM [21].

TNM is designed to eventually replace the FHWA’s prior pair of computer programs,

STAMINA 2.0/OPTIMA. De-Jong’s formula for barrier prediction is used in TNM

[22].

Lam [23] improved on Maekawa’s method by summing the complex pressures

instead of the energies travelling along each of the diffraction paths around finite

length barriers. Muradali and Fyfe [24] subsequently extended Lam’s research by

using the Kurze and Anderson formulation as well as Pierce’s in combination with

Lam’s summation procedure with successful results.

3.3 Experimental Studies

Experiments on barrier performance have been performed at various laboratories

with the objective of controlling the environmental variables such as wind, tempera-

ture gradients, turbulence, and finite impedance ground surfaces. Full-scale outdoor

experiments have also been performed at several locations. Despite the inherent
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errors associated with environmental factors, the results obtained from full-scale ex-

periments have their own value. But in that case, particular care should be taken

when comparisons are made among different barrier designs since inevitably a number

of environmental parameters cannot be controlled.

As noted, a number of small scale laboratory experiments have been carried out.

Scaled experiments are usually performed indoors with the aim of controlling envi-

ronmental variables. Atmospheric influences, such as temperature gradients, wind

and turbulence can be avoided and the use of a deterministic sound source makes

comparison with the results of numerical models easier. Kawai et al. [25] reported

very good agreement of the results from model experiments of sound attenuation of

a thin half-plane with the theoretically calculated values using the second term of

the approximate expression of Macdonald’s solution. May et al. [26] reported results

from model studies of variously profiled single and parallel barriers in typical highway

situations. Rasmussen [27] reported a series of measurements involving an artificial

earth berm on a canvas surface simulating grass-covered ground.

Some full-scale measurement have been performed with artificial sound sources. A

series of measurement of the performance of full-scale noise barrier of various heights

were performed by Scholes and et al. [28]. Experimental results were compared to

the empirical model of Maekawa which was found not to account for the effect of

ground reflection accurately. More recently Watts et al. [29] conducted full-scale

measurements with various barrier shapes. The designs chosen included T-shaped,

multiple-edge and double barriers. It was found that multiple-edge and T-shaped

barriers gave a consistent improvement in insertion loss over a wide area compared to

a simple reflective barrier. Burroughs and Bontomase [30] found experimentally that

noise transmission through barriers themselves should not be ignored in the case of

a full-scale, wooden barriers.

Much care needs to be taken when designing a full-scale experiment to evaluate

the performance of a noise barrier in highway locations. In this case, a traffic noise

prediction model must be used to calculate the predicted sound pressure level, unlike
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the case of a scale-model or full-scale models in which arbitrary noise sources such

as a loudspeaker can be used. Steele [31] reviewed several traffic noise prediction

models. In most cases, researchers did not measure the sound pressure level before

the barrier was installed. The data without the barrier in place are often calculated

by using a prediction model, which can itself be inaccurate. Rochat [32] performed

roadside measurements at various locations in the United States and indicated that

the calculated sound levels from Traffic Noise Model is within 1.5 dB of the measured

levels. Comparison between different traffic noise models used in the United States

was performed by Wayson et al. [33].

It can be seen from the literature review that detailed work involving both com-

plex barrier geometry and absorptive treatment has not been performed though some

research has been reported about the advantages of complicated barrier top geom-

etry and of sound absorptive treatments applied to the surface of the barrier. In

this study, three-dimensional boundary element models combined with scaled barrier

experiments in a controlled laboratory environment with a microphone array were

employed to evaluate the benefits of various geometries and sound absorptive treat-

ments.
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4. THEORETICAL BACKGROUND

4.1 Diffraction-based Models

Two-dimensional analysis

Consider the situation shown in Figure 4.1 in which a source and receiver are

separated by a semi-infinite barrier. The pressure at the receiver associated with

sound waves travelling along the ith path can be expressed as

pi = Aie
jϕi(−jH1

0 (kdi)) (4.1)

where Ai, ϕi, di and H1
0 are the amplitude, phase change upon diffraction, path length

of the diffracted wave and Hankel function of first kind of order zero, respectively.

Kurze and Anderson [18] found an approximate solution for the reduction of sound

pressure due to the presence of a semi-infinite barrier between a line source and

receiver. According to their formulation, the amplitude of the diffracted field is given

by

Ai =
di(1 − cot( θi−αi

2
))

2π(Ai + Bi)
√

δi

λ
(1 + di

Ai+Bi
)
. (4.2)

The geometrical parameters appearing in this equation are defined in Figure 4.2, and

note that the subscript i denotes the parameters associated with the ith path joining

the source and receiver. The path length difference between the diffracted and direct

paths, δ = (A+B−d), becomes small for receivers close to the line-of-sight: i.e., near

the geometrical shadow boundary. At sufficiently low frequencies, the wavelength, λ,

inevitably becomes large enough that the quantity δ/λ becomes very small: under

these conditions, equation 4.2 diverges. Thus, this formulation is strictly applicable

only at high frequencies and for receivers deep in the shadow zone: these limitations

of diffraction-based models will be demonstrated in results presented below. The

phase factor in equation 4.1 is usually ignored in the two-dimensional case: i.e., ϕi,
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is assumed to be zero. When sound rays propagate to the receiver via different paths

(for example, when a barrier is placed on a hard surface, as illustrated in Figure 4.3),

the various contributions must be summed at the receiver location to give the total

sound pressure. That is, the total pressure, PR, at the receiver is the sum of the

diffracted pressures arriving via the individual paths, and is given by

PR =
4∑
i

pi =
4∑
i

Aie
jϕi(−jH

(1)
0 (kdi)) (4.3)

for a two-dimensional geometry. The four possible paths that join the source and

receiver in the case of a finite-height barrier placed on a reflecting ground surface are

shown in Figure 4.3.

Three-dimensional analysis

In a three-dimensional geometry, the sound pressure generated by a point source

and arriving at the receiver along the ith path, pi, is given by

pi = Aie
jϕi(

e−jkdi

di

) (4.4)

and the amplitude of the diffracted field is given by

Ai =
di

doi

di(1 − cot( θi−αi

2
))

2π(Ai + Bi)
√

δi

λ
(1 + di

Ai+Bi
)

(4.5)

where di is the direct distance between the source and receiver and doi is the path

length of the diffracted wave. Pierce has shown that in the three-dimensional case the

phase change, ϕi, converges to an asymptotic value of π
4
, and that value has been used

in the present calculations. There are eight paths joining the source and the receiver

in the case of a finite-length barrier placed on a reflecting ground surface: those

paths are shown in Figure 4.4. In comparison with the two-dimensional case, the four

additional paths arise from diffraction around the sides of the finite length barrier.

It can be seen that when the source is placed near the ground, ground reflections of

the side-diffracted components occur on the source side but not the receiver side (i.e.,

paths 7 and 8 in Figure 4.4). Finally, the total pressure, PR, at the receiver is the

sum of the diffracted pressures arriving via the individual paths, and is thus given by

PR =
8∑
i

pi =
8∑
i

Aie
jϕi(

e−jkdi

di

) (4.6)
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for the finite-length barrier placed on a perfectly reflecting surface.

4.2 Boundary Element Method

Boundary element methods are a powerful alternative to finite element and diffraction-

based methods. They are particularly useful in cases where the surrounding domain

extends to infinity as in the barrier case. The most important feature of bound-

ary element methods is that they require only the discretization of the surface of the

structure (i.e., the barrier in this case), and not the volume surrounding the structure.

Boundary element methods associated with acoustical problems will be discussed in

this section. It is well known that the propagation of acoustic waves is governed by

a scalar wave equation. Reflections, scattering and diffractions are characterized by

boundary conditions. If a harmonic excitation can be assumed, the acoustic field

obeys the Helmholtz equation. Sound radiation or scattering mostly involves solu-

tions of this equation over finite radiators or scatterers in an infinite homogeneous

medium. Boundary integral equations are well suited for solving such problems. Some

basic concepts behind the boundary element method that plays an important role in

barrier applications are summarized in this section. More details can be found in

reference [34], [35] and [36].

4.2.1 Helmholtz Equation

Sound waves in fluids involve local changes in the pressure, density and temper-

ature of the media. In regions where the density increases above its equilibrium

value, the pressure also increases. The fundamental equations of fluid dynamics for

a non-viscous fluid include the linearized continuity equation,

∂ρ0

∂t
+ ρ0

∂vx

∂x
+ ρ0

∂vy

∂y
+ ρ0

∂vz

∂z
= 0, (4.7)

where ρ0 is fluid density and vx, vy, vz are the particle velocities in the x−, y− and

z−directions, respectively. Euler’s equation, or the conservation of momentum in an

inviscid fluid, is expressed in linearized form as

ρ0(
∂vx

∂t
�i +

∂vy

∂t
�j +

∂vz

∂t
�k) + (

∂p

∂x
�i +

∂p

∂y
�j +

∂p

∂z
�k) = 0 (4.8)
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where �i, �j, �k are unit vectors in x−,y− and z−directions, respectively. Equation 4.8

is valid for small amplitude sound waves. The propagation of sound waves in air does

not generally cause any significant exchange of thermal energy between adjacent air

particles, and thus the entropy of the gas is constant. Thus, the propagation of sound

waves can be assumed to be nearly adiabatic. In that case, the relationship between

pressure and density is

p(�x, t) = B(
ρ

ρ0

) (4.9)

where B is the adiabatic bulk modulus or ρ0(
∂P
∂ρ

)ρ0 . Equations 4.7 to 4.9 can be

combined into a single equation with one variable: i.e., the fluctuating pressure. The

result is the linearized, homogeneous acoustic wave equation that is given by

∇2p =
1

c2

∂2p

∂t2
(4.10)

where c is the speed of sound. If we assume the variation of pressure with time is

sinusoidal, we can assume a solution for Equation 4.10 of the form

p(�x, t) = Real{P (�x)ejωt}. (4.11)

The substitution of Equation 4.11 into Equation 4.10 yields the Helmholtz equation:

i.e.,

∇2P (�x) + k2P (�x) = 0 (4.12)

where k is the wave number, defined as ω/c and upper case letters are used to indicate

a frequency-dependent phasor.

4.2.2 Direct Collocation Method

The aim of the direct collocation method is to determine two acoustic variables;

pressure and particle velocity, in the interior or the exterior domain of an object. This

method relies on a boundary integral formulation of the Helmholtz equation. The

unknowns are the pressure and the normal velocities on the surface of the boundary,

which can then be used to calculate the acoustic variables at any point away from the

boundary surface. The solution of the wave equation can be simplified by introducing
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the notion of an acoustic point source and the corresponding Green’s function. The

source strength of an ideal point source is defined as

q = ρ0Sv̄ (4.13)

where ρ0, S, v̄ are the fluid density, the surface area and the mean surface velocity

over the surface region. The acoustic field around the point source has to satisfy the

Helmholtz equation. At the position of the source, the pressure has to satisfy the

following equation,

∇2P (�x) + k2P (�x) = −qδ(�x − �y) (4.14)

where �x, �y and δ(�x − �y) are the locations of the receivers, the source and the three-

dimensional Dirac delta function, respectively. The pressure at point �x can be written

as

p(�x, �y) = q
e−jkr(
x,
y)

4πr(�x, �y)
(4.15)

where r(�x, �y) is the distance between the receiver and the source. The Green’s function

G(�x, �y) for a point source is defined as the solution of the inhomogeneous Helmholtz

equation for a point source with unit source strength. For for an unbound fluid, it is

given by

G(�x, �y) =
e−jkr(
x,
y)

4πr(�x, �y)
. (4.16)

Green’s third theorem relates the integral over a surface to the volume integral

bounded by the surface for any two functions provided that they are sufficiently

smooth and non-singular inside the volume. The use of the pressure and the three-

dimensional free space Green function in Green’s third theorem leads to an integral

expression relating the pressure at any point in a volume to the values of pressure

and normal velocity on the surface. This integral equation is called the Helmholtz

integral equation and is

p(�x) =
∫

(p(�y)
∂G(�x, �y)

∂n
− G(�x, �y)

∂p(�y)

∂n
)dS(�y). (4.17)
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4.2.3 Indirect Variational Boundary Element Method

The indirect boundary element method allows the internal and external acoustic

radiation and scattering problems to be solved simultaneously. While in the direct

collocation method the acoustic surface variables, i.e., the pressure and particle veloc-

ity, are assigned to one side of the surface, the indirect representation uses multi-layer

potentials expressing the differences between the outer and inner values of pressure

and its normal derivative, respectively. The difference between the outer and inner

pressure on the surface, µ, is called pressure jump, or double layer potential, and is

defined as

µ = p+ − p−. (4.18)

In addition, σ is the difference between the outer and inner normal derivatives of

pressure on the surface and is called the normal derivative pressure jump, or the

single layer potential, and can be written as

σ =
∂p+

∂n
− ∂p−

∂n
. (4.19)

In the indirect method, the acoustic variables at any point in the volume are computed

as functions of these layered potentials. The pressure at an arbitrary point is thus

given by

p(�x) =
∫

(µ(�y)
∂G(�x, �y)

∂ny

− σ(�y)G(�x, �y))dS(�y). (4.20)

This formula can be solved with integral formulations for appropriate boundary con-

ditions using a variational method.

4.3 Acoustic Intensity

The instantaneous acoustic intensity, �I, of a sound wave is defined as the rate of

flow of energy through a unit area normal to the direction of sound propagation, and

it can be expressed as

�I = p�v. (4.21)
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The time average of the instantaneous power flow through a unit area is the mean

intensity vector, �I, and it is defined as

�I =
1

T

∫ T

0
p�vdt. (4.22)

The instantaneous intensity can be decomposed into two components: an active com-

ponent and a reactive component.

The active component corresponds to local net transport of sound energy and

the reactive component corresponds to local oscillatory transport of energy. These

two intensity components are associated with the components of particle velocity

in-phase and out-of-phase with the acoustic pressure, respectively. The active and

reactive components of intensity can be readily derived for a one-dimensional, single

frequency sound field. The pressure p(�x, t) can be expressed as

p(�x, t) = Real{P (�x)ej(ωt+φ(
x))} (4.23)

and the pressure gradient as

δp(x, t)

δx
= [

dP (x)

dx
+ 

dφ

dx
P (x)]e(ωt+φ(x)). (4.24)

The particle velocity is given as

V = (
j

ωρ0

)
∂P

∂x
. (4.25)

The component of particle velocity in-phase with the pressure is associated with the

active component of the intensity, which is given by their product as

Ia(x, t) = − 1

ωρ0

[P 2 dφ

dx
] cos2(ωt + φ) (4.26)

of which the mean value is

− 1

2ωρ0

[P 2 dφ

dx
]. (4.27)

The reactive component of intensity is given as

Ir(x, t) = − 1

4ωρ0

[
dP

dx
] sin2(ωt + φ) (4.28)
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and its mean value is zero. It can be seen that the active component of intensity

is proportional to the spatial gradient of phase, and the reactive component is pro-

portional to the spatial gradient of mean square pressure. The sound power of an

acoustical source is independent of position. The sound power, W , is the integral of

the normal intensity over a surface of the source and is given by

W =
∫

�Ird�S. (4.29)
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Figure 4.1. Diffraction by a rigid, semi-infinite barrier.
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5. DIFFRACTION BY A RIGID CIRCULAR DISK

5.1 Introduction

In the present work, sound wave diffraction by a rigid circular disk was studied

as a preliminary step before proceeding to the analysis of complex acoustic barriers.

A study of the case of a circular disk was also useful as a means of gaining insight

into the effects of geometrical factors on the performance of barriers since circular

disks are often used to study the effect of complex shapes on diffraction. It has been

previously reported that complex disk geometries result in reduced root-mean-square

sound pressures at measurement points on the axis compared to those measured in

the case of a simple circular disk [37]. The boundary element model is known to be

able to solve the case of a complicated geometry more accurately than diffraction-

based models. Here, a boundary element model for the simple circular disk case

was developed first, and it was validated against results from experiments that were

performed in an anechoic chamber.

5.2 Boundary Element Model

Geometry modelling

The commercially available boundary element software SYSNOISE [38] was used

to solve the wave-based scattering solution in the present work. SYSNOISE does

not feature a pre-processor for creating discretized models, but it offers interfaces to

a variety of pre-processors. Here MSC PATRAN [39] was used to generate various

models. A two-dimensional model, in which an infinitely thin circular disk was as-

sumed, was first created to reduce the computation time. The effects of disk thickness

were considered next, as described in this chapter. The number of elements used here

was 842 for a maximum frequency of 10 kHz. A schematic diagram illustrating the



25

geometry of the problem used for the numerical study is shown in Figure 5.1. A point

sound source was located 165 cm in front of the circular disk, along the axis normal

to the center of the disk. The diameter of the circular disk was 15 cm. Seven receivers

were located 10 cm behind the circular disk, spaced 2.5 cm apart, starting from the

center axis. The geometrical shadow zone can be defined as the conical zone from the

sound source through the annular region along the edge of the obstacle in the sound

field. Three receiver locations are in the geometrical shadow zone including one point

on the axis. One receiver point was near to the boundary of the shadow zone, and

three receivers were in the bright zone.

Numerical considerations

The indirect variational boundary element method requires a greater computa-

tional effort than the direct collocation method for the construction of the system

matrix. However, the subsequent calculation time for the indirect method is reduced

compared to that for the direct collocation method since the matrix is symmetric in

the former case. Thus, the indirect method was used here. Recall that the insertion

loss is defined as the difference between the sound pressure level without the barrier

in place and the sound pressure level at the same location with the barrier in place.

Figure 5.2 shows the insertion losses at three different locations in the shadow zone for

the present case. In the zone near the central axis the pressure is large: this region is

called the “bright spot”. Its diameter is approximately one wave-length immediately

behind the disk, and increases with increasing distance from the disk. The bright zone

very near to the central axis causes there to be a negative insertion loss at receiver

locations on the axis as can be seen in Figure 5.2: i.e., the sound pressure level is

increased at this point after the circular disk is placed between the sound source and

the receivers. In this case the distance between on-axis receiver and any point along

the edge of the circular disk is the same and thus constructive interference occurs.

The insertion loss values in the remainder of the shadow zone are positive: i.e., the

barrier attenuates the sound field. For the receiver 25 mm off the axis, the insertion

loss increases with frequency up to around 9000 Hz, and reaches a maximum value
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of 16.5 dB. The insertion loss reaches a maximum value of 11 dB at about 4500 Hz

for the receiver 50 mm off the center axis. It should be noticed that the insertion

losses at both receiver locations are still negative at frequencies below 2000 Hz. The

acoustic wavelength is about equal to the diameter of the disk at 2000 Hz. This sug-

gests that, below this frequency, the circular obstacle does not significantly affect the

sound field. Figure 5.3 shows the insertion loss values at receiver locations outside

the shadow region. It can be seen that the insertion losses are very small up to 1000

Hz regardless of the receiver location because of the relatively long wavelength at

low frequencies. It can also be seen that the insertion loss tends towards zero as the

receiver location is moved away from the shadow region. Thus the insertion loss value

measured 150 mm off the axis is the smallest among the values for the three points

in the shadow zone.

5.3 Experimental Validation

5.3.1 Experimental Setup

Experiments were performed to verify the results obtained using the numerical

model. The experiments were performed in the anechoic chamber at the Ray W.

Herrick Laboratories at Purdue University. The dimensions of the anechoic chamber

are 3.66 m × 3.66 m × 3.66 m. Figure 5.4 shows the experimental setup used. To

simulate a monopole source in the experiments, a small loudspeaker was purchased

and installed at one end of a PVC pipe. The diameter of the loudspeaker was 29

mm and the length of the pipe was 80 mm including the cap. Foam was inserted

into the pipe to reduce any resonant behavior. It should be noted that, due to its

small dimensions, the loudspeaker response at low frequencies was small. To measure

the sound pressure level, a B&K 6.35 mm condenser microphone type 4136 was used

in conjunction with a B&K microphone amplifier type 5935, and a pistonphone type

4228. A Spectral Dynamics Siglab model 20-42 was used for data acquisition [40]. The

Siglab device was controlled using MATLAB and running on a Dell Laptop Inspiron

3200. A random input signal with a 20 kHz bandwidth was generated using the

virtual function generator in Siglab, and the sampling frequency was automatically
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selected as 2.56 times the bandwidth of interest, resulting in a sampling rate of 51.2

kHz. Here 4096 point records were used for the Fourier transforms which yields a

frequency resolution of 12.5 Hz. A circular disk made of bronze with a diameter

of 75 mm and a thickness of 10 mm was used as the obstacle between the speaker

and microphone. The circular disk was hung using wires attached at four different

circumferential positions. The measurements were performed in an anechoic chamber

to reduce the effects of any undesirable reflection. The loudspeaker was located at

a distance of 165 cm in front of the disk. The centers of the speaker driver and

of the circular disk were aligned. A microphone was positioned along a line 10 cm

behind the disk and normal to the axis joining the loudspeaker and the disk center.

Measurement positions were spaced 2.5 cm apart from the point on the axis up to a

distance of 15 cm off axis.

5.3.2 Post-processing of Experimental Data

Continuous random input and transient impulse input

The sound pressure level of the diffracted sound was relatively low. A preliminary

study was performed to increase the signal-to-noise ratio. Transient impulse signals

have been used in the past as the input for diffraction experiments owing to the con-

venience with which spurious echoes may be removed [41]. That is, spurious features

in the impulse response function can easily be eliminated by simple algebraic opera-

tions. However, the impulse input does not have a uniform power spectrum over the

entire frequency band of an interest. Figure 5.4 shows the experimental apparatus

used to make the diffraction measurements. Figure 5.5 shows the impulse response

function in the free field when the microphone was positioned on-axis 60 mm from

the loudspeaker. Measurements were repeated three times with a different number

of time-domain averages in each case. First, 100 samples were used, and then the

number of averages was increased up to 500. In the presence of high signal-to-noise

ratios, the results should be the same regardless of the number of averages. In this

case, however, some variation of the impulse response with the number of averages

when the transient impulse is used. By comparison, the impulse function obtained
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by calculating the inverse Fourier transform of the frequency response function mea-

sured using a continuous random input does not vary noticeably with the number of

averages. Thus it was concluded that it was desirable to use a continuous input for

these tests.

Time windowing of the impulse function

Errors associated with sound wave reflection from miscellaneous objects are un-

avoidable in a test like this, even when experiments are performed inside an anechoic

chamber. Here procedures were developed to eliminate the effects of such reflections.

The inverse Fourier transform was first used to calculate the impulse response func-

tion from measured frequency response data. A time window was then applied to each

record to eliminate spurious reflections. The impulse response function shows sound

arriving after a certain time delay according to the path length between the sound

source and receiver. The sampling frequency was fixed at 51.2 kHz, corresponding

to a maximum frequency of interest of 20 kHz. From the symmetry characteristics

of the Fourier transform, the data from fs/2 to fs may be constructed using the data

from 0 to fs/2. However, the frequency response function was only available up to

fs/2.56 in this case, which corresponds to a maximum frequency of 20 kHz: i.e., the

frequency response function data from 20 kHz to 25.6 kHz was not available. Figure

5.6 suggests that the amplitude of the frequency response function was small in the

frequency range greater than 20 kHz compared to that at other frequencies. A value

of zero was assumed for the frequency response function for the frequencies from 20

kHz to 25.6 kHz. The magnitude of the imaginary part of the reconstructed impulse

response function was around 10−19 which supports the validity of the procedure used

to fold the data around the point fs/2. The impulse response function is shown in

Figure 5.7. It takes approximately 6 ms for the sound to reach the microphone from

the speaker, located 175 cm downstream. Events can also be seen in the impulse

response at about 10 and 16 ms in Figure 5.7. These events are likely associated with

reflections from the wall, floor, microphone holder or speaker stand. A time window

was applied to zero the impulse response after 8 ms seconds. The ”cleansed” impulse
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response function following the application of the time windowing operation is shown

in Figure 5.8

5.3.3 Insertion Loss Results

Influence of time window

A comparison between the insertion loss from the numerical predictions and the

experiments without the application of time-domain windowing is shown in Figures

5.9 to 5.13. Five receiver points were considered: one on-axis, two in the shadow zone,

one at the boundary of shadow zone and one outside the shadow zone. The general

trend of the numerical prediction is in good agreement with the experimental results,

except at the point on the shadow boundary (see Figure 5.12). The error at the

boundary was believed to come from the assumption of infinitesimal disk thickness

in the numerical model. This issue will be addressed later.

Figure 5.9 shows a comparison between insertion losses from the numerical pre-

dictions and from experimental data on the central axis. Good agreement can be

observed up to 6000 Hz. Above that frequency, some discrepancy can be observed

between the two results. This discrepancy is believed to result from experimental

error, specially positioning error. At 10 kHz, the wavelength is only 3.4 cm. This

means that a positioning error of less than 1 cm can generate a phase difference of

more than π/2. Thus a small receiver positioning error was believed to interfere with

the perfect constructive interference that is predicted to occur at the receiver location

on the central axis, which results in a positive insertion loss in the experimental re-

sults. However, both results show that the insertion loss is small or even negative at

this particular receiver location, which confirms the existence of central bright zone.

A comparison between the numerical results and experimental data is shown in

Figure 5.10 for one point in the shadow zone. Both results show a positive insertion

loss in the frequency range from 2 to 10 kHz. It should be noted that the oscillatory

features of the experimental data curves increase as the insertion loss is increased.

This was attributed to the low sound pressure level for high insertion loss values and

to the resulting decrease in the signal-to-noise ratio in the frequency region of high
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insertion loss. Another insertion loss comparison is shown in Figure 5.11 for a point 50

mm off-axis. The numerical model successfully predicts the trend of the experimental

data. Poor signal-to-noise also can be observed around the frequency region where

the peak values of insertion loss occurs.

In contrast with the successful results at the three points in the shadow region,

the numerical model fails to predict the experimental result accurately at the shadow

boundary as illustrated in Figure 5.12. It is believed that the infinitely thin disk

assumption in the numerical model causes this discrepancy. A numerical model with

finite thickness was consequently developed, as described in the following subsection.

Finally, it can be seen in Figure 5.13 that the numerical model is accurate for the

receiver location outside the shadow region. Small oscillatory features can be seen in

the experimental result in this case, but otherwise both curves match quite well.

A comparison of the insertion losses after the time windowing operation was per-

formed on the experimental results are shown in Figure 5.14 to 5.18. It can be seen

that the time-domain windowing essentially eliminate the small oscillatory features

except in the low frequency range, below 500 Hz. The large oscillation of the inser-

tion loss in the low frequency range is due to the poor response of loudspeaker at low

frequencies. Figure 5.15 compares the insertion loss between the numerical model

and experiment at a point 25 mm off axis. There is excellent agreement between

2 and 6 kHz. There are small peaks at 8 and 9 kHz which are believed to result

from experimental errors. The insertion loss comparison at the second point in the

shadow region, shown in Figure 5.16, is also satisfactory. The insertion loss in Figure

5.17 again illustrates the failure of the numerical model at the shadow boundary,

due to the infinitely thin disk assumption. The insertion loss comparison shown in

Figure 5.18 demonstrates that the numerical model gives excellent results for receiver

locations outside the shadow region.

5.3.4 Effects of Disk Thickness

A three-dimensional boundary element model was developed with MSC PATRAN

to represent a finite thickness disk. Unlike the two-dimensional modelling case, an-
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other step is necessary when importing a solid model into the boundary element solver

SYSNOISE. The pressure and velocity (or single and double layer potentials in the

case of indirect boundary element method) need only be known on the surface of the

structure, so a so-called skinning process is necessary to delete any internal nodes

and element inside the solid model. Figure 5.19 to 5.23 show the comparisons of the

insertion losses between the numerical predictions and experimental results when the

effects of a finite thickness are considered. It can be seen in these figures that the

insertion loss calculated using the actual disk thickness yields better agreement with

the experimental results than does the two-dimensional model particularly near the

shadow boundary. The results in Figure 5.19 to 5.21 show that the finite thickness

disk does not make a large difference in the shadow zone, although the high fre-

quency, on-axis results are somewhat improved (Figure 5.19). More significantly, the

insertion losses shown in Figure 5.22 are in much better agreement when the finite

disk thickness is accounted for. The insertion loss comparison in Figure 5.23 shows

that both numerical models give excellent results for the receiver locations outside

the shadow region. The comparisons shown shown here illustrate that the infinitely

thin disk model can be used without much error as long as the receiver locations are

not very close to the boundary of the shadow region.
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Figure 5.2. Insertion loss of circular disk at three receiver locations inside the
shadow zone. ‘—’: receiver on the axis; ‘· · ·’: receiver 25 mm off the axis; ‘-·-·’:

receiver 50 mm off the axis.
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Figure 5.3. Insertion loss of circular disk at three receiver locations outside the
shadow zone: ‘—’: receiver 100 mm off the axis; ‘· · ·’: 125 mm off the axis; ‘-·-·’:

150 mm off the axis.
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Figure 5.5. a) Impulse response function from impulse input with 100, 300 and 500
averages; b) Impulse response functions from continuous random input with 100,

300 and 500 averages.
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Figure 5.6. Amplitude of frequency response function on the axis.
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Figure 5.7. Impulse response function calculated at the receiver point on the axis
behind the circular disk.
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Figure 5.8. Impulse response function calculated at the receiver point on the axis
behind the circular disk after time-domain windowing.
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Figure 5.9. Comparison of insertion loss at receiver point on the axis. ‘· · ·’:
experimental data; ‘—’: numerical simulation with infinitely thin assumption.
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Figure 5.10. Comparison of insertion loss at receiver point 25 mm off the axis. ‘· · ·’:
experimental data; ‘—’: numerical simulation with infinitely thin assumption.
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Figure 5.11. Comparison of insertion loss at receiver point 50 mm off the axis. ‘· · ·’:
experimental data; ‘—’: numerical simulation with infinitely thin assumption.
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Figure 5.12. Comparison of insertion loss at receiver point 75 mm off the axis. ‘· · ·’:
experimental data; ‘—’: numerical simulation with infinitely thin assumption.
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Figure 5.13. Comparison of insertion loss at receiver point 100 mm off the axis.
‘· · ·’: experimental data; ‘—’: numerical simulation with infinitely thin assumption.
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Figure 5.14. Comparison of insertion loss at receiver point on the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.15. Comparison of insertion loss at receiver point 25 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.16. Comparison of insertion loss at receiver point 50 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.17. Comparison of insertion loss at receiver point 75 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.18. Comparison of insertion loss at receiver point 100 mm off the axis.
‘· · ·’: experimental data with time window technique; ‘—’: numerical simulation

with infinitely thin assumption.
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Figure 5.19. Comparison of insertion loss at receiver point on the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.20. Comparison of insertion loss at receiver point 25 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.



52

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−20

−15

−10

−5

0

5

10

15

20

25

30

Frequency(Hz)

In
se

rt
io

n 
Lo

ss
 (

dB
)

Figure 5.21. Comparison of insertion loss at receiver point 50 mm off the axis. ‘· · ·’:
experimental data with time window technique, ‘—’: numerical simulation with

infinitely thin assumption, ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.22. Comparison of insertion loss at receiver point 75 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.23. Comparison of insertion loss at receiver point 100 mm off the axis.
‘· · ·’: experimental data with time window technique; ‘—’: numerical simulation
with infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.14. Comparison of insertion loss at receiver point on the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.15. Comparison of insertion loss at receiver point 25 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.16. Comparison of insertion loss at receiver point 50 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.17. Comparison of insertion loss at receiver point 75 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption.
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Figure 5.18. Comparison of insertion loss at receiver point 100 mm off the axis.
‘· · ·’: experimental data with time window technique; ‘—’: numerical simulation

with infinitely thin assumption.
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Figure 5.19. Comparison of insertion loss at receiver point on the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.20. Comparison of insertion loss at receiver point 25 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.21. Comparison of insertion loss at receiver point 50 mm off the axis. ‘· · ·’:
experimental data with time window technique, ‘—’: numerical simulation with

infinitely thin assumption, ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.22. Comparison of insertion loss at receiver point 75 mm off the axis. ‘· · ·’:
experimental data with time window technique; ‘—’: numerical simulation with

infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.
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Figure 5.23. Comparison of insertion loss at receiver point 100 mm off the axis.
‘· · ·’: experimental data with time window technique; ‘—’: numerical simulation
with infinitely thin assumption; ‘-·-·’: numerical simulation with finite thickness.
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6. DIFFRACTION BY OBSTACLES WITH COMPLEX SHAPES

6.1 Introduction

As discussed earlier it has been reported that the use of complex barrier geome-

tries may result in lower root-mean-square sound pressures at measurement points on

their central axis compared to the case of simple circular disks [37]. The boundary

element model is known to be more accurate for this class of problems than approx-

imate, diffraction-based procedures and the boundary element procedure is used to

investigate the effects of barrier shape. Three different shapes were used to study the

effects of geometry on rigid barrier performance.

6.2 Boundary Element Models

Geometry modelling

Here the shape of the scattering obstacle was varied while maintaining the same

surface area. Figure 6.1 shows the three different shapes that were used to investigate

the effects of shape on the diffracted sound field. The uni-radial disk had a radius of

7.5 cm. The bi-radial disk was divided into two halves with radii of 8.25 cm and 6.675

cm. The tri-radial model had three segments of different radii, each being equal in

augular extent. The number of surface elements used was 1852, 1949, and 1896 for the

uni-radial, bi-radial and tri-radial models, respectively. The locations of the sound

source and the receiver were chosen to be the same for all three cases. A schematic

diagram illustrating the configuration for the numerical study is shown in Figure 5.1.

The point source was located 165 cm in front of the circular disk, along the center

axis. The diameter of the circular disk was 15 cm. A linear array of seven receivers

was located 10 cm behind the circular disk plane, with a spacing of 2.5 cm, starting

from the point on the axis.
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6.2.1 Insertion Loss Results

The sound pressure level was calculated using SYSNOISE and results were ex-

ported into MATLAB to calculate the insertion loss. Comparisons between insertion

losses were performed at four receiver locations: one on-axis, two in the shadow zone,

and one at the boundary of the shadow zone. A comparison between the insertion

loss for the three disk models is shown in Figures 6.2 to 6.5. Four receiver points

were considered; one on-axis, two in the shadow zone, and one at the boundary of

the shadow zone.

Figure 6.2 shows the comparison between the insertion losses for the three disk

models, on the center axis. It can be seen that the more complicated disk shapes yield

slightly higher insertion losses in this case. However, the benefit is only 1-2 dB at high

frequencies, and the insertion loss is still negative in this region. The insertion losses

for all three disk shapes are the same at low frequencies since at those frequencies

the disk is samll compared to a wavelength. For all three cases, the insertion loss is

negative at this particular receiver location which confirms the existence of a central

bright zone. In Figure 6.3 a comparison between the three disk configurations is

presented for the first location in the shadow zone 25 mm off the center axis. For all

three cases, the insertion loss is positive in the frequency range between 2 and 6 kHz.

At 6 kHz the bi-radial disk insertion loss is 15 dB, which is about 10 dB greater than

that of the simple disk. A similar comparison for the location 50 mm off-axis is shown

in Figure 6.4. In contrast to the result at 25 mm off axis, the results at this point

illustrate that the performance of bi-radial disk is not as good at high frequencies as

to that of the uni-radial disk, although it is somewhat better in the frequency range

from 1 kHz to 3.8 kHz. The tri-radial disk performance is worse than that of the

uni-radial disk at all frequencies.

The insertion loss comparison near the shadow boundary is shown in Figure 6.5.

There are not many differences between the insertion loss values for the three configu-

rations at this receiver point, in contrast with the results in the shadow region. It may

be noticed in this case that the simple disk barrier performance is more “balanced”
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than those of the two barrier designs having more complex shapes.

The results presented here suggest that evaluating the performance of barriers of

complex shapes by considering the insertion loss at only certain receiver location can

be misleading. A different metric based on sound power was investigated to address

this problem.

6.2.2 Sound Power in the Shadow Zone

It was shown in the last sub-section that the insertion loss for the various disks

varies significantly as a function of receiver location. This observation suggests that

insertion loss might not be a good metric for evaluating the performance of disks

having complicated shapes.

The boundary element method makes it possible to compute the sound pressure,

the acoustic particle velocity and hence the acoustic intensity, which is the sound

power per unit area crossing each receiver surface. By integrating the intensity over

various receiver planes, the sound power propagating within the shadow zone can be

calculated. The sketch in Figure 6.6 shows how the receiver planes are defined in

this case. Note that diffraction causes acoustic energy to scatter from the illuminated

zone into the shadow zone in the region behind the obstacle. Thus it is expected

that the sound power travelling in the shadow zone should progressively increase

with distance behind the barrier. Nevertheless, it has been found that at sufficiently

large distances behind the barrier the sound power converges to a nearly stationary

limit. The sound power propagating through the shadow zone is then essentially

independent of distance far from the barrier.

Figure 6.7 shows the sound power propagating downstream one meter behind the

three disks considered here. Note that the receiver plane is based on the shadow

region defined by the circular disk in all cases. There are other possible choices of

receiver plane since it depends on the shape of the shadow region which in turn is

determined by the shape of the obstacle. It was decided to use the shadow zone

defined by the simple disk for all three types of geometry since the aim of introducing

changes in barrier shapes is to reduce the sound energy in the shadow zone already
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defined.

It can be seen clearly in Figure 6.7 that the sound power over the shadow zone

has not been reduced by the use of more complex geometries. In particular, there are

not any noticeable differences in terms of sound power between the three different

geometries in the frequency range 0 to 5 kHz. At higher frequencies, the sound power

in fact increases when more complex geometries are used. The increase is only on

the order of 2-3 dB which is perhaps not very significant. Nonetheless, at least in the

examples considered here, the shaped disks do not show any significant advantage

compared to the uniform disk.

It is suggested here that the performance of a barrier having a relatively compli-

cated geometry can be quantified most effectively in terms of the sound power crossing

a recovery plane downstream of the barrier as long as the recovery plane is located

an appropriate distance behind the barrier. The use of a sound power metric makes

it relatively straightforward to compare the relative performance of various designs,

and thus may prove to be a useful tool for barrier shape optimization. It has also

been found here that shaped barriers do not necessarily offer any net performance

benefit when compared with an equivalent uniform barrier.
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Figure 6.1. Geometry of the three obstacles for the study of the influence of
complex shapes.
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Figure 6.2. Insertion loss vs. frequency. Receiver point on the axis. ‘—’: uni-radial
disk; ‘· · ·’: bi-radial disk; ‘-·-·’: tri-radial disk.
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Figure 6.3. Insertion loss vs. frequency. Receiver point 25 mm off the axis. ‘—’:
uni-radial disk; ‘· · ·’: bi-radial disk; ‘-·-·’: tri-radial disk.
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Figure 6.4. Insertion loss vs. frequency. Receiver point 50 mm off the axis. ‘—’:
uni-radial disk; ‘· · ·’: bi-radial disk; ‘-·-·’: tri-radial disk.
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Figure 6.5. Insertion loss vs. frequency. Receiver point 75 mm off the axis. ‘—’:
uni-radial disk; ‘· · ·’: bi-radial disk; ‘-·-·’: tri-radial disk.
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Figure 6.6. The receiver planes defined from the geometrical shadow boundary in
case of the circular disk.
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Figure 6.7. Comparison of sound power at receiver plane over the shadow zone 1 m
behind the disk. ‘—’: uni-radial disk; ‘· · ·’: bi-radial disk; ‘-·-·’: tri-radial disk.
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7. SCALED PHYSICAL MODEL OF RIGID STRAIGHT-EDGE BARRIER

7.1 Introduction

In this chapter we consider scaled barrier models that were intended to represent

highway noise barrier applications. The experiments were designed to be performed

in an anechoic chamber to eliminate any atmospheric effects which could not be ac-

counted for exactly. A comparison between a diffraction-based model and a boundary

element model was first made for the case of an infinite length barrier geometry. The

limitations of the widely used diffraction-based model were studied. Experiments

were also performed to compare the predictive capability of diffraction-based models

and boundary element analysis in the case of a finite length barrier.

7.2 Straight Infinite Barrier

In an ideal case, a boundary element model should be used to predict the per-

formance of a finite size barrier and then should be verified by comparison with

experimental results. The calculation load in this case, however, becomes prohibitive

because of the so-called six element rule which states that there should be at least

six elements per wavelength on the face of the barrier at the maximum frequency of

interest. It should be noted that for a real barrier with a length of 10 m and a height

of 2 m, the discretization of the rectangular surface with six nodes per wavelength

requires 600 / λ2 unknowns where λ is the wavelength. At 1000 Hz, λ is 0.34 m and

a full linear system with about 5000 unknowns need to be solved. Therefore, it is

of interest to investigate the accuracy of diffraction-based models that require less

computing power.



67

7.2.1 Diffraction-based Model

The geometry for a semi-infinite barrier without consideration of ground reflection

is shown in Figure 7.1. In this case a cylindrical sound source was located 5 meters in

front of the barrier and 2.5 meters below its top. The receiver was placed 20 meters

behind the barrier and was 1.5 meters below the barrier top. Only diffraction at the

top of the barrier was considered since the barrier is considered to be infinitely long

with the result that only a single path joins the source and receiver. The insertion

loss calculated by using the theory presented in section 4.1, for a semi-infinite barrier

without consideration of ground reflection is shown in Figure 7.2. The results shown

in Figure 7.2 demonstrate the general characteristics of noise barrier performance, in

particular, that a barrier is not effective at low frequencies.

In Figure 7.3 the source and receiver geometry is illustrated for a 3 meter tall

barrier placed on a hard ground surface. The insertion loss for that case is shown in

Figure 7.4. This result should be compared to the case without ground reflection in

Figure 7.2. In this finite-height barrier case, the additional ground reflection paths

result in interference between the various diffracted sound rays with the result that

a number of peaks and dips appear in the insertion loss. Thus, one result of ground

reflection is to cause the performance of a barrier to display a strong dependence on

frequency. This dependence on frequency varies according to the source and receiver

locations.

7.2.2 Boundary Element Model

The boundary element code SYSNOISE was used to calculate a two-dimensional,

wave-based solution for the geometry considered above. MSC Patran was used to

generate the various models used here as in the earlier study. In the two-dimensional

case, a cylindrical line source was assumed to generate the sound field. In the case of

a barrier placed on a hard surface, it is only necessary to discretize the barrier surface

since the presence of a uniform reflecting plane can be accounted for automatically

in the boundary element calculations. The geometry shown in Figure 7.3 was con-

structed in the boundary element code SYSNOISE. Note that a typical boundary
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element analysis is performed in two steps. First, the Green’s function appropriate

for the particular sound source and model geometry is computed. Once that calcu-

lation is performed, the sound field at arbitrary receiver points can be calculated in

a second stage. It is the first step of this procedure that requires the majority of the

computation time. To reproduce the diffraction-based calculation of Figure 7.3, 300

surface elements were used to represent the barrier, and the maximum analysis fre-

quency was 5667 Hz based on the requirement that there be at least six elements per

wavelength at the highest frequency of interest. To create the results presented here,

the analysis was performed from 0 Hz to 2000 Hz in steps of 10 Hz. In the present

case, the CPU time required for first step of the boundary element calculation was

431 seconds on an IBM RS-6000 workstation.

7.2.3 Comparison of Diffraction-based and Boundary Element Models

A comparison of the insertion losses calculated by using both the diffraction model

and the boundary element model is shown in Figure 7.5 for a receiver point located

at (x,y)=(20, 1.5): i.e., for a point 20 meters behind the barrier and 1.5 m above

the ground. It can be seen that there is generally good agreement between the

two models except in the vicinity of the insertion loss peaks, which are systemically

under-estimated by the diffraction model, particularly at low frequencies. The latter

behavior is characteristic of diffraction-based models.

It was noted earlier that one disadvantage of diffraction-based models is their

inability to handle receiver points near the line-of-sight: i.e., close to the shadow

boundary. Figure 7.6 shows the locations of several receiver points for the case of a 3

meter tall barrier when the sound source is placed 5 meter in front of the barrier at

the height of 0.5 meter. The model geometry was otherwise the same in this case as

in the case illustrated in Figure 7.3, except that the receiver was moved progressively

closer to the shadow boundary as illustrated. The results shown in Figures 7.7 to

7.9 demonstrate that the accuracy of the diffraction-based predictions does indeed

deteriorate as the receiver point approaches the shadow boundary. The diffraction

model error is greater at lower frequencies as expected.
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7.3 Straight Barrier of Finite Length

The difference between the performance of a finite size barrier and an infinite

length barrier comes from diffraction around the sides of the finite size barrier. That

is, the finite size barrier has four additional paths from the sound source to the

receiver due to the diffraction around its ends. If the width of the finite size barrier

is much greater than the barrier height, the amplitude of the diffraction from the

two sides of the barrier is small compared to the diffraction from the top of the

barrier. A comparison of two- and three-dimensional diffraction models was performed

before the three-dimensional boundary element model was validated by comparison

with experimental results. The height of the barrier was 3 meters and the receiver

was placed 20 meters behind the barrier at a height of 1.5 meters midway along

the barrier’s length: Figure 7.10 shows the configuration for this comparison. The

insertion loss for a 20 meter long barrier is shown in Figure 7.11 where it is compared

with an equivalent result for an infinitely long barrier. It can be seen in that figure that

the insertion loss of a finite-length barrier is reduced compared to that of an infinitely

long barrier as a result of diffraction around the barrier edges. The insertion loss

of the finite length barrier is also very frequency-dependent owing to the diffraction

around the ends of the barrier.

7.3.1 Boundary Element Model

MSC PATRAN was then used to generate a model of a three dimensional geom-

etry that could be directly compared with experimental results. Linear rectangular

elements in MSC PATRAN were used to generate the 9065 elements for the straight

barrier which had dimensions of 37 cm × 244 cm. The thickness of the plate was

not considered in the numerical model. The point sound source was assumed to be

located 100 cm in front of the barrier on the ground and midway along the barrier’s

length. The 17 receivers were located 116 cm behind the barrier and spanned the

space from the ground plane to the boundary of the shadow zone which was 80 cm

above the ground plane at this distance behind the barrier. The analysis was pre-

formed from 200 to 6000 Hz in steps of 200 Hz. In this instance, the calculation took
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137637 seconds on an IBM-RS 6000.

7.3.2 Experimental Methods

Note that when the source is situated on the ground the insertion loss of a barrier

situated on a perfectly reflecting plane is equal to the insertion loss of a screen in free

space that is twice the height of the original barrier. This equivalence is illustrated in

Figure 7.12 using the mirror image method. The use of this configuration eliminates

the necessity of creating a perfectly reflecting plane and thus the errors associated

with finite impedance values of the material used for the reflecting plane. Experiments

were performed for the case of a straight barrier of finite length in order to verify the

numerical model. The dimensions of the steel plate used in the experiment were 74

cm × 244 cm × 3 mm. The scale factor to a realistic highway barrier is about 10 and

thus the frequency is also scaled by approximately a factor of 10. To reinforce the

plate, two L-shape channels were bolted to the rear of the plate, as shown in Figure

7.13. Four holes at each corner of the plate were made to allow the plate to be hung

using steel wires. The experiments were performed in the anechoic chamber. A small

driver installed at one end of a 10 mm PVC pipe was again used as the sound source.

To measure the sound field, 17 microphones were used to measure the sound pressure

level simultaneously at various locations within the geometrical shadow zone. The

geometry for this case is shown in Figure 7.14. The microphones were inserted into 6

mm diameter holes in a 1.27 cm diameter wooden rod. The circular cross section of

the wooden rod was chosen to minimize diffraction off the microphone holder. Modal

Shop T130C21 microphones were used with PCB model 442B119 ICP sensor signal

conditioners with 0 dB gain. A G.R.A.S. Sound & Vibration Pistonphone type 42AA

with octopus coupler type RA0025 designed to work with the microphone array was

used for calibration. The LMS CADA-X system was used to acquire multichannel

data in combination with an Agilent E8403A VXI mainframe.

7.3.3 Post-processing of Experimental Data

Typically, diffraction experiments have been performed using impulsive input sig-

nal to facilitate the identification of the desired response. Since the distance between
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the sound source and receiver is known, simple algebraic calculations yield the time

necessary for sound waves to travel from the source to the receiver. Spurious events

which occur at different time delays can be easily identified and eliminated by a time

domain editing method. However, the impulse input method could not be imple-

mented in this case because of the speaker’s limited frequency response and dynamic

range: i.e., the experimental signal-to-noise ratio was not acceptable over a wide fre-

quency range when an impulsive signal was used. As a result, a continuous random

input signal was chosen. The use of random signals yielded better signal-to-noise

ratios compared to impulsive signals as explained in section 5.3.2. The disadvantage

of using a continuous input random signal is the difficulty of identifying spurious

reflective effects. This problem can be avoided by adopting post-processing tech-

niques involving the use of the inverse Fourier transform. The time domain impulse

response function can be calculated from the measured frequency domain transfer

function with a knowledge of the sampling frequency, the frequency resolution and

the total bandwidth. A time window can then be employed to eliminate spurious

reflection and diffraction features from the impulse response function. Unlike the cir-

cular disk experiments described in chapter 5.3.2, different time windows were used

for the measurements performed with and without the scaled barrier in place be-

tween the sound source and receiver. This was necessary because of the differences

in the dimensions of the two obstacles in the two experiments. For the circular disk

case, the distance between the sound source and receiver was much larger than the

dimension of the circular disk. Note that the distance between the speaker and the

microphone was 2.16 m while the radius of circular disk was only 7.5 cm. Thus,

it was not necessary to modify the path length when the circular disk was present

between the sound source and microphone. In contrast, the size of the rectangular

barrier was comparable to the distance between the sound source and the receiver

and it was necessary to account for the relatively large difference between the direct

and diffracted path lengths in this case.

Note also that the 2.86 cm driver that was used for this experiment had a very low
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sensitivity at frequencies below 500 Hz because of its small size. Thus the signal-to-

noise ratio is very poor at low frequencies. The calculation of the insertion loss involves

a division of transfer functions in the frequency domain. This division becomes very

unstable at frequencies at which the signal is contaminated with noise.

Figure 7.15 illustrates the post-processing procedure used here. In the diagram,

TF1 is the measured transfer function without barrier, IRF1 is the impulse response

function associated with TF1, wIRF1 is the windowed time domain impulse response

function and wTF1 is the transfer function in the frequency domain calculated from

wIRF1. TF2 is the measured transfer function with the barrier in place, TF3 is the

transfer function resulting from the division of TF2/wTF1, and IRF3 is the impulse

transfer function associated with TF3. fIRF3 is the impulse response function after a

high pass filter operation. Windowing fIRF3 in the time domain gives wfIRF3. wfTF3

is the transfer function after the filtering in the frequency domain and the window-

ing operation in the time domain which eliminates errors related to the experiment.

Finally, nTF2 is the transfer function with the barrier between the sound source and

microphones and it can be used to calculate the insertion loss which is designated as

IL in the diagram. Therefore, TF1 should represent the system characteristic of the

loudspeaker including the time delay resulting from the spatial separation between

the sound source and the receivers. TF2 involves the loudspeaker characteristic and

includes the effects of the time delay and diffraction phenomena at the edges of the

scaled barrier. The operation TF2/TF1 is performed to eliminate the loudspeaker fre-

quency response and the time delay from TF2. These procedures allow the isolation

of the signal components related to the diffraction effects of interest.

Figure 7.16 shows a measured transfer function without the scaled barrier model

in place. The inverse Fourier transform was used to obtain the impulse response func-

tion in the time domain which helps to identify the reflection from the walls, ceiling

and floor. Algebraic calculations show that sound should take 6 ms to reach the

microphone when there is no obstacle between the sound source and the microphone.

However, the results in Figure 7.17 show that there are many small features after the
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6 ms which are believed to result from spurious reflections from various components

of the experimental apparatus. Care must be taken when the time domain window

is applied. Any abrupt discontinuity in the windowing function results in lightly

damped oscillations in the frequency domain data. The time domain window shown

in Figure 7.18 was designed to remove the trailing component from the impulse re-

sponse function in a smooth way. The impulse response function after the windowing

operation is shown in Figure 7.19. A Fourier transform was then employed to obtain

the transfer function associated only with the response of the loudspeaker and wave

propagation between the sound source and the receiver. This transfer function is

shown in Figure 7.20. Sound takes approximately 6 ms to reach the microphone after

hitting the top and bottom of the plate when the barrier is present for a receiver

location in the middle of the barrier height 1 m behind the barrier. The 2.44 meter

width of the scaled barrier gives a time delay of 10 ms. However, the impulse re-

sponse function measured with the scaled barrier model in place shows a much longer

response. These additional features are reflections of other objects in the anechoic

chambers. To remove the effects of those features correctly, one further intermediate

step is necessary. Transfer function TF2 shown in Figure 7.21 represents three physi-

cal effects: the loudspeaker response, the wave propagation between the loudspeaker

and the receiver locations, and any diffraction phenomenon at the edges of the scaled

barrier. The division of the transfer function with the barrier by the transfer function

measured without the barrier was done to eliminate the effect of the loudspeaker fre-

quency response and the time delay related to wave propagation. The result is shown

in Figure 7.22.

The problem now is the low amplitude and poor signal-to-noise ratio at low fre-

quencies which makes this division very unstable. It can be seen in Figure 7.23 that

an apparent oscillation at low frequency exists in the impulse response function. A

highpass filter was designed to cut off signal components below 400 Hz in MATLAB

to deal with this problem. A Chebyshev type I filter of order 1 with a specification

of 0.5 dB ripple in the passband and 1.0 dB attenuation in the stop band was used.
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the resultant impulse response function is shown in Figure 7.24. In addition, a time

window was utilized to remove any signals after 4 ms. Note that the time delay

associated with the wave propagation from the sound source to the receivers has been

removed by the division operation of TF2/wTF1. So the impulse response function

fIRF3 should start at 0.4 ms second which accounts for the difference in time taken

for sound to travel via the top of the barrier and the direct path without barrier.

The path length when the barrier is present is 107 cm from the sound source to the

top of the barrier and 122 cm from the top of the barrier to the receiver location

for the microphone 116 cm behind in the middle of the plate. This gives an indirect

path length of 229 cm which is 13 cm longer than the direct path which connects

the locations of the sound source and the receiver. The resulting impulse response

function is shown in Figure 7.25. The final processed version of the transfer function

TF3 is shown in Figure 7.26. The transfer function for the case with barrier present

between the sound source and receiver after appropriate post-processing is shown in

Figure 7.27.

A comparison between the insertion loss calculated with and without the use of

the post-processing techniques at selected receiver points are shown in Figures 7.28

to 7.31. Many spurious peaks in the insertion loss are removed by the time domain

windowing and high pass filtering, at least above 500 Hz. The apparently increased

insertion loss in this low frequency region is due to the very low sensitivity of the

loudspeaker.

Figure 7.28 shows that the insertion loss increases with frequency, following a

trend similar to the performance of the semi-infinite barrier shown in Figure 7.2.

Note that the microphone located at the midpoint of the barrier gives the same result

that would be measured if the receiver were located on the ground behind a finite

height barrier placed on the ground. When the receiver is on the ground there is no

complicated interference from the ground reflection on the receiver side. It should

also be noted that the sound source is located at the midpoint of the barrier height.

Thus, there is no ground reflection on the source side, either. The small dips and
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peaks in the insertion loss for the receiver in this location can be explained by the

effect of diffraction from the sides of the barrier.

The insertion loss data 10.16 cm above the ground and 116 cm behind the 37 cm

barrier is shown in Figure 7.29. The insertion loss reaches its maximum values at

1600 Hz and 4700 Hz. For receiver locations deep in the shadow zone, insertion loss

values greater than 20 dB can be achieved. Figure 7.30 shows that the insertion loss is

decreased when the receiver is moved towards the shadow region. More complicated

interference effects from ground reflections occurs in this case, which create the peaks

and dips in the insertion loss. When the receiver point is located 30.48 cm from the

middle of the barrier height, the insertion loss is only 5 dB at several frequencies as

illustrated in Figure 7.31.

7.3.4 Comparison between Boundary Element Model Predictions and

Experimental Results

In general, the numerical predictions are in relatively good agreement with the

experimental results except at frequencies greater than 5000 Hz. Direct comparisons

between numerical predictions and experimental data are shown in Figures 7.32 to

7.35, for five receiver locations (shown in Figure 7.14). The comparison of the inser-

tion loss for the midpoint receiver shown in Figure 7.32 shows very good agreement

between the experiment and numerical prediction. The numerical model correctly

predicts the increase in insertion loss with the frequency. The numerical prediction

in Figure 7.33 shows a good agreement for a receiver location deep in the shadow

zone. The frequencies where the insertion loss is a maximum are predicted with good

accuracy. Figure 7.35 illustrates acceptable agreement between the numerical and

experimental results close to the edge of the shadow zone.

Note that the computations were performed only for a limited number of fre-

quencies to limit the computational costs. The solid lines connecting the predicted

insertion loss values are shown only as a guide. The frequency resolution of the nu-

merical data was much smaller than that of the experimental data, making the two

curves appear at fist glance different. But the computed insertion losses in most cases
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are close to the measured values.
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Figure 7.2. Insertion loss vs. frequency. Semi-infinite barrier. Prediction obtained
using Equation 4.1 and 4.2
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Figure 7.4. Insertion loss vs. frequency. Infinite length barrier on a hard ground.
Prediction from diffraction-based model.
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Figure 7.5. Comparison of insertion loss between the diffraction model and
boundary element model. ‘—’: Boundary element model; ‘· · ·’: Diffraction Model.
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Figure 7.7. Comparison of insertion loss calculated using the diffraction and the
boundary element model at receiver point (6,2). ‘—’: Boundary element model;

‘· · ·’: Diffraction Model.
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Figure 7.8. Comparison of insertion loss calculated using the diffraction and the
boundary element model at receiver point (6,4)‘—’: Boundary element model; ‘· · ·’:

Diffraction Model.
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Figure 7.9. Comparison of insertion loss calculated using the diffraction and the
boundary element model at receiver point (6,5). ‘—’: Boundary element model;

‘· · ·’: Diffraction Model.
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Figure 7.10. Geometry of infinite length and finite length barrier. All dimensions
are m.
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Figure 7.11. Comparison of insertion loss of an infinite length barrier and a finite
length barrier. ‘—’: infinite length barrier, ‘· · ·’: finite length barrier.
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Figure 7.12. Barrier experimental setup taking advantage of symmetry conditions.
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Figure 7.16. Transfer function without rectangular barrier in place. TF1.
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Figure 7.17. Impulse response function without barrier. IRF1.
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Figure 7.19. Time-windowed impulse response function without barrier. wIRF1.
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Figure 7.20. Time-windowed transfer function without the barrier. wTF1.
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Figure 7.21. Transfer function measured with the barrier in place. TF2.
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Figure 7.22. Transfer function of diffraction phenomena. TF3.
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Figure 7.23. Impulse response function accounting for the diffraction. IRF3.
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Figure 7.24. Impulse response function accounting for the diffraction after filtering.
fIRF3
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Figure 7.25. Impulse response function accounting for the diffraction after filtering
and windowing. wfIRF3.
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Figure 7.26. Transfer function accounting for diffraction after filtering and
windowing. wfTF3.
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Figure 7.27. Transfer function with the barrier in the sound field after the
post-processing. nTF2.
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Figure 7.28. Comparison of insertion loss between the experimental data with and
without post-processing at the receiver point at the midpoint of the barrier height:

‘—’ after the post post-processing, ‘· · ·’ without post-processing.
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Figure 7.29. Comparison of insertion loss between the experimental data with and
without post-processing at the receiver point 10.16 cm off the midpoint of the

barrier height: ‘—’ after the post post-processing, ‘· · ·’ without post-processing.
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Figure 7.30. Comparison of insertion loss between the experimental data with and
without post-processing at the receiver point 20.32 cm off the midpoint of the

barrier height: ‘—’ after the post post-processing, ‘· · ·’ without post-processing.
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Figure 7.31. Comparison of insertion loss between the experimental data with and
without post-processing at the receiver point 30.48 cm off the midpoint of the

barrier height: ‘—’ after the post post-processing, ‘· · ·’ without post-processing.
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Figure 7.32. Comparison of insertion loss between the boundary element model and
experiment with post-processing at the receiver point at the midpoint of the barrier

height: ‘—’ boundary element model, ‘· · ·’ experiment.
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Figure 7.33. Comparison of insertion loss between the boundary element model and
experiment with post-processing at the receiver point 10.16 cm off the midpoint of

the barrier height: ‘—’ boundary element model, ‘· · ·’ experiment.
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Figure 7.34. Comparison of insertion loss between the boundary element model and
experiment with post-processing at the receiver point 20.32 cm off the midpoint of

the barrier height: ‘—’ boundary element model, ‘· · ·’ experiment.
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Figure 7.35. Comparison of insertion loss between the boundary element model and
experiment with post-processing at the receiver point 30.48 cm off the midpoint of

the barrier height; ‘—’: boundary element model; ‘· · ·’: experiment.
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8. PERFORMANCE OF OTHER BARRIER CONCEPTS

8.1 Introduction

Much research has been performed with the intention of improving the perfor-

mance of barriers without rasing their height. In particular, various barrier-top ge-

ometries have been suggested to improve sound barrier performance: e.g., T-shaped

and Y-shaped barrier top treatments. The performance of several different barrier top

treatments, both absorptive and non-absorptive are compared to the corresponding

straight barrier in the experimental work described in this chapter.

8.2 Straight Barrier with Extended Height

A preliminary study was performed to study the improvement of insertion loss that

can be obtained simply by extending the height of a barrier. The results presented

here give a first insight into the performance improvement that can be expected

by raising barrier height. These results also provide a reference against which the

performance of various other types of barriers can be compared. An experimental

study was performed for the straight barrier having an initial effective height of 36.83

cm along with 2.54 cm, 5.08 cm and 7.62 cm extensions. Experiments were first

performed for a straight barrier which was 204 cm in length by 76 cm high with a

thickness of 10 mm. For the next step, 2.54 cm, 5.08 cm and 7.62 cm wide metal

strips, 204 cm long were attached to the top and bottom of the straight barrier. Note

that this is same as raising the barrier height from 38 cm to 39.39, 41.91 and 44.45

cm, respectively when the barrier is placed on the ground as described in the last

chapter.
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8.2.1 Experimental Methods

In the work described in the last chapter, 17 receiver locations were used to evalu-

ate the performance of the straight barrier. A more complicated top geometry creates

more complex interference patterns behind the barrier. Therefore, to help evaluate

the performance of the various acoustic barriers more accurately, 60 receiver loca-

tions were used on a plane parallel to the barrier in the shadow region. A knowledge

of the sound pressure level at those receiver locations enables the calculation of the

spatial insertion loss distribution over the receiver plane at selected frequencies. In

addition, 2.54 cm, 5.08 cm and 7.62 cm wide metal strips were attached to the top

and bottom of the straight plate to extend it to the desired heights. The source

loudspeaker was located 73.66 cm in front of the barrier midway along the barrier’s

height and length. The 60 receivers were located 68.58 cm behind the barrier and

spread from the midpoint of the barrier height to the boundary of the shadow zone

which is 71.12 cm above the midpoint of the barrier height at this distance behind

the barrier. The experimental apparatus used to make the diffraction measurements

in this case is shown in Figure 8.1, and Figure 8.2 illustrates the dimensions of the

microphone array used in this study. The various barrier dimensions are shown in

Figure 8.3. Note again that the height of the steel plate used here is twice of that of

the equivalent barrier on the ground because of the symmetry conditions that apply.

8.2.2 Comparison of Experimental Results

First, the insertion loss was compared at selected receiver locations over the fre-

quency range up to 8000 Hz. To facilitate the comparison between various barrier

designs, narrow band experimental insertion loss results were averaged into the 1/3

octave band results. One receiver location was selected to be on the virtual ground

which is midway up the barrier height; a second microphone was located near the

midpoint of the shadow zone of the equivalent barrier height: i.e., at 17.78 cm above

the barrier midpoint. Both microphones were located midway along the barrier’s

length.

The effect of increasing the barrier height is shown in Figures 8.4 and 8.5 in
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terms of insertion loss against frequency at one receiver location. A comparison of

the insertion loss at the midpoint of barrier height (Figure 8.4) shows a monotonic

insertion loss increase for all four configurations. This simple result follows from the

fact that the receiver is located on the “ground” behind the barrier. Thus, there

were no ground reflection interference effects. The 2.54 cm extended barrier gives

an improvement of about 2 dB over all frequencies while the barrier with a 5.08 cm

extension gives an insertion loss gain of 2 to 5 dB depending on frequency. It can be

seen that extending the barrier by 7.62 cm gives an increase of insertion loss from 2

to 10 dB compared to the basic barrier at this particular receiver location. Figure 8.5

shows the insertion losses at the point in the middle of the shadow region. Compared

to the insertion loss curves shown in Figure 8.4, the ground reflection effects in this

case cause the insertion loss gain to be dependent on frequency. The three extended

barrier designs do give better protection for the receiver at this point compared to the

basic barrier; there were insertion loss increases of up to 7 dB. These results confirm

the fact that a barrier’s height is the single most important factor in determining its

insertion loss.

Figures 8.4 and 8.5 clearly illustrate that the insertion loss increases with barrier

height. However, since the cost of building a noise barrier usually depends on its

height, it is of interest to keep the barrier height as small as possible while maintaining

a given level of noise control performance. The idea of shaping the top of the barrier

to improve the insertion loss for a given barrier height is considered next.

8.3 T-shape Barriers

One of many possible barrier top shapes was selected in order to evaluate the

potential improvements in insertion loss that can be obtained by modifying the barrier

top geometry. The height of the barriers considered was 73.66 cm, but the top of the

barrier was given different horizontal widths: i.e., the barrier was T-shaped. T-shaped

barriers with different top widths were created by adding 5.08, 10.16 and 15.24 cm

wide metal strips to the barrier top. The dimensions of the three barrier configurations

are shown in Figure 8.6, along with the corresponding straight barrier design. The
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loudspeaker was located 73.66 cm in front of the barrier midway along the barrier’s

height and length as before. The 60 receivers were located 68.58 cm behind the barrier

from the midpoint of the barrier height to the boundary of the shadow zone which is

71.12 cm above the midpoint of the barrier height at this distance behind the barrier.

8.3.1 Comparison of Experimental Results

First, the insertion loss was compared at selected receiver locations over the fre-

quency range up to 8000 Hz. The receiver locations were the same as described

previously for the straight barrier with extended heights. The effect of adding hor-

izontal widths on the top of the barrier is shown in Figures 8.7 and 8.8 in terms of

insertion loss over frequency at one receiver location.

Figure 8.7 illustrates the insertion losses of the three different T-shaped barriers

along with the insertion loss of the straight barrier at the midpoint of the barrier

height. At this point the increase of insertion loss was considerably larger than that

provided by the straight extension cases considered in the last subsection. The 5.08

cm wide T-top shows a monotonic increase in insertion loss with frequency while the

two other configurations show a frequency-dependent increase. At the middle of the

shadow region, the insertion loss increases more smoothly with frequency, compared

to the receiver on the virtual ground, as shown in Figure 8.8. One noticeable feature

of all three T-shapes is the insertion loss increase of up to 5 dB in the relatively low

frequency range up to 1600 Hz: but the relative benefits of T-shapes compared to a

simple extension decrease as the frequency is increased.

Although T-shaped barriers with various configurations yielded better perfor-

mance than a straight barrier of the same height, it cannot be thought of as a valid

comparison since those three T-shaped barriers involve the use of more material than

do straight barriers. Thus, a fairer comparison was made here to see the benefit

of the T-shaped top: a comparison was made between 5.08 cm straight extension

and 5.08 cm wide T-shape barrier. Figures 8.9 and 8.10 shows comparisons of the

insertion losses in these two cases. It is apparent from the figures that the T-shape

configuration does not result in a significant overall benefit when compared against
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the corresponding linearly extended barrier.

8.4 Influence of Sound Absorbing Materials Placed on T-shaped Barriers

It is known that sound absorptive materials can be used to enhance barrier per-

formance. In particular, sound absorptive treatments have been widely used in the

parallel barrier situation. It has also been suggested that sound absorptive material

should be placed on the edge of a barrier to reduce the diffraction from the top. Here,

experiments were performed to measure the increase in insertion loss when glass fiber

was attached to the top of the horizontal plate of the T-shaped barrier. In this case,

5.08, 10.16 and 15.24 cm width glass fiber pieces having a 2.54 cm thickness were

added to the top of the corresponding three different types of T-shapes. Figure 8.11

shows the dimensions of the T-shape barriers with acoustic treatment.

The loudspeaker and 60 receivers were located as in the previous tests. First,

comparisons were made for each particular T-shaped barrier with and without sound

absorptive treatment. Figures 8.12 and 8.13 show the improvement at two differ-

ent positions in insertion loss resulting from the application of a sound absorptive

treatment to the 5.08 cm wide T-shape barrier. The increase in insertion loss at the

midpoint is mostly in the high frequency region and the magnitude of the increase is

not large as shown in Figure 8.12. Figure 8.13 also shows the same trend.

The same comparison was made for the 10.16 cm T-shaped barrier with and

without sound absorptive treatment. The results in this case are shown in Figure 8.14

at the midpoint of the barrier height. It can be seen that application of the sound

treatment to the top of the T-shape smooths out the peaks and dips in the insertion

loss. It can also be observed that there is an overall improvement in performance in

the frequency range from 4000 - 8000 Hz. An increase in the frequency bands from

3150 Hz to 8000 Hz can be seen in Figure 8.15 when the insertion loss was measured

at the midpoint of the barrier height. The last comparison was made for a 15.24 cm

wide T-shape barrier. Figures 8.16 and 8.17 show that the insertion loss is increased

as frequencies above 2000 Hz at both measurement locations after application of the

absorptive material.
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8.5 Effective Use of Sound Absorbing Treatment

It has been suggested that positioning sound absorptive material on the edge of a

barrier reduces the diffraction from the top of the barrier and increases the insertion

loss behind the barrier. However, optimal positioning of porous materials has not

been studied extensively. The modelling of porous material is relatively complicated

when the porous material is used without a solid structure behind it. Calculation

of acoustic impedance in this case requires finite element modelling of the micro-

structure of the porous material. The techniques for including calculated impedance

values from a finite element model into the acoustic boundary element model have

not yet been fully verified. Thus an experimental study was performed for various

barrier configurations to identify the most effective way of using porous material. The

loudspeaker was located 73.66 cm in front of the barrier midway along the barrier’s

height and length. The 60 receivers were located 68.58 cm behind the barrier from

the midpoint of the barrier height to the boundary of the shadow zone which is 71.12

cm above the midpoint of the barrier height at this distance behind the barrier.

Effective Positioning of Porous Material

Fiberglass pieces of 10.16 cm width and 2.54 cm thickness were used to study the

effects of positioning absorptive material at the edge of the barrier. In the first case,

a 10.16 cm wide glass fiber strip was pasted on the front side of the barrier with a

5.08 cm overlap on the rigid barrier. This arrangement gave a 5.08 cm extension of

the barrier without a hard backing. In the second case, the fiberglass was placed on

the back of the barrier with the same overlap of 5.08 cm. Finally a measurement

was performed with two 10.16 cm wide fiber glass pieces attached on both sides of

the barrier with an overlap of 5.08 cm. The geometries for these cases are shown in

Figure 8.18.

A comparison is shown in Figure 8.19 between the performance of the three bar-

riers with sound absorptive treatments and a straight barrier with no acoustic treat-

ment for a the receiver located at the midpoint of the barrier height. All three sound

absorptive configurations result in a considerable increase in the insertion loss for
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this receiver location. The experimental result suggests that when the fiberglass was

attached on both sides of the rigid barrier the performance of barrier was worse than

when a single piece of fiberglass was placed on either side of the barrier. This result

needs more investigation at this point.

It can be seen in Figure 8.20 that better performance is obtained by placing the

sound absorptive material on the front side of the barrier rather than the rear side

when the receiver is at the midpoint of the shadow zone. As before, the configuration

with sound absorptive treatment on both sides of the barrier performs worse than the

case where absorptive treatment was placed on the front of the barrier.

Effects of Overlap on the rigid wall

Next, the 10.16 cm inch wide and 2.54 cm thick fiberglass was used to see the

effect of positioning the absorptive material on the top of the barrier. In the first

case, the 10.16 cm wide fiberglass was pasted on the front side of the barrier with a

5.08 cm overlap on the rigid barrier. This configuration gave a 5.08 cm extension of

the barrier without hard backing. The second case featured a 2.54 cm wide overlap

with the rigid barrier. The sound absorptive treatment was applied on the source

side of the barrier based on the earlier results. Figure 8.21 illustrates the geometries

of two sound absorptive treatments.

The effect of the size of the overlapped region at the edge of the barrier is shown

in Figure 8.22. At this receiver location, the additional 2.54 cm wide fiberglass of

2.54 cm thickness gave an additional 5 dB increment in the insertion loss from 4000

to 8000 Hz. Note that there is no noticeable difference in insertion loss curves in

the low frequency region up to 1600 Hz since the characteristic of sound absorptive

material used in this study does not give any significant sound absorption at those

low frequencies. Figure 8.23 shows that the 2.54 cm of additional overlap does not

make a noticeable difference at the midpoint of the shadow zone. In this case the

increased overlap gives only slightly better performance in the frequency band 2000

Hz to 5000 Hz. It can again be seen that there is no difference in insertion losses in

the low frequencies.
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8.6 Comparison of Various Barrier Configurations

To assess the relative performance of the various configurations considered in this

chapter, three cases were compared: the 5.08 cm linear extension on the basic bar-

rier; the T-shaped barrier with a 5.08 cm wide top; and a 7.62 cm sound absorptive

treatment with 2.54 cm overlap with the rigid barrier. Figure 8.24 shows those con-

figurations. Note that the 7.62 cm wide fiber glass was positioned on the front side

of the rigid barrier based on the discussion earlier about the positioning of sound

absorptive treatments.

Figure 8.25 shows that the absorptive treatment on the top edge of the barrier

has a significant advantage over the other two configurations. Especially in the fre-

quency band from 3150 Hz to 6300 Hz, the performance enhancement produced by

the absorptive extension was more than 10 dB compared to a straight barrier with

the same height. The benefit of the sound absorptive treatment also can be seen in

Figure 8.26. At this receiver point, much smooth insertion loss was obtained and

dips in the insertion loss were eliminated. Figure 8.27 and Figure 8.28 shows that the

sound absorptive extension raise the insertion loss particularly in the frequency band

from 4000 to 8000 Hz. It can be observed that the benefit of soft extension decreases

as the receiver location approaches the shadow boundary as shown in Figure 8.29.

However, still fiber glass extension slightly works better than other designs at this

receiver location.

In this section, the improvement of the insertion loss associated with increased

barrier height were addressed. The performance of the T-shape barrier was compared

against the corresponding straight barrier. The effective use of sound absorptive

material was also considered. Finally, it was found that it is more efficient to use

porous material without any rigid backing structure when the porous material is

added to the top edge of the barrier when an improvement in the insertion loss is

desired at receiver locations deep in the shadow region.
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Figure 8.1. Geometry for finite length barrier analysis with microphone array.



121

5.08

20.32 20.32 20.32

Figure 8.2. Dimension of the microphone array.
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Figure 8.3. Geometry of the straight barrier and extended barriers with different
heights.
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Figure 8.4. Comparison of insertion loss at the midpoint of the barrier height.
‘bigcirc’: basic barrier without extension; ‘�’: straight barrier with 2.54 cm

extension; ‘�’: straight barrier with 5.08 cm extension; ‘�’: straight barrier with
7.62 cm extension.
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Figure 8.5. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: basic barrier without extension; ‘�’: straight barrier with 2.54
cm extension; ‘�’: straight barrier with 5.08 cm extension; ‘�’: straight barrier

with 7.62 cm extension.
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Figure 8.6. Geometry of the T-shape barrier designs.
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Figure 8.7. Comparison of insertion loss at the midpoint of the barrier height. ©’:
basic barrier without extension; ‘�’: T-shape barrier with 5.08 cm wide top; ‘�’:
T-shape barrier with 10.16 cm wide top; ‘�’: T-shape barrier with 15.24 cm wide

top.
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Figure 8.8. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: basic barrier without extension, ‘�’ T-shape barrier with 5.08
cm wide top; ‘�’: T-shape barrier with 10.16 cm wide top; ‘�’: T-shape barrier

with 15.24 cm wide top.
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Figure 8.9. Comparison of insertion loss at the midpoint of the barrier height. ‘©’:
straight barrier with 5.08 cm linear extension; ‘�’: T-shape barrier with 5.08 cm

wide top.
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Figure 8.10. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: straight barrier with 5.08 cm linear extension; ‘�’: T-shape

barrier with 5.08 cm wide top.
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Figure 8.11. Geometry of the T-shape designs with sound absorptive treatment.
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Figure 8.12. Comparison of insertion loss at the midpoint of the barrier height. ‘©’:
T-shape barrier with 5.08 cm wide top; ‘�’: T-shape barrier with 5.08 cm wide top

with sound absorptive treatment.
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Figure 8.13. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: T-shape barrier with 5.08 cm wide top; ‘�’: T-shape barrier

with 5.08 cm wide top with sound absorptive treatment.
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Figure 8.14. Comparison of insertion loss at the midpoint of the barrier height. ‘©’:
T-shape barrier with 10.16 cm wide top; ‘�’: T-shape barrier with 10.16 cm wide

top with sound absorptive treatment.
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Figure 8.15. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: T-shape barrier with 10.16 cm wide top; ‘�’: T-shape barrier

with 10.16 cm wide top with sound absorptive treatment.
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Figure 8.16. Comparison of insertion loss at the midpoint of the barrier height. ‘©’:
T-shape barrier with 15.24 cm wide top; ‘�’: T-shape barrier with 15.24 cm wide

top with sound absorptive treatment.
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Figure 8.17. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: T-shape barrier with 15.24 cm wide top; ‘�’: T-shape barrier

with 15.24 cm wide top with sound absorptive treatment.
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Figure 8.18. Geometry of the extended sound absorptive material on the barrier
edge.
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Figure 8.19. Comparison of insertion loss at the midpoint of the barrier height. ‘©’:
basic straight barrier; ‘�’: straight barrier with 10.16 cm wide and 2.54 cm thick
fiberglass on the front with 5.08 cm overlap with the rigid barrier; ‘�’: straight

barrier with 10.16 cm wide and 2.54 cm thick fiberglass on the rear with 5.08 cm
overlap with the rigid barrier straight; ‘�’: straight barrier with 10.16 cm wide and
2.54 cm thick fiberglass on both sides with 5.08 cm overlap with the rigid barrier.
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Figure 8.20. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: basic straight barrier; ‘�’ straight barrier with 10.16 cm wide

and 2.54 cm thick fiberglass on the front with 5.08 cm overlap with the rigid barrier;
‘�’: straight barrier with 10.16 cm wide and 2.54 cm thick fiberglass on the rear

with 5.08 cm overlap with the rigid barrier straight; ‘�’: straight barrier with 10.16
cm wide and 2.54 cm thick fiberglass on both sides with 5.08 cm overlap with the

rigid barrier.
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Figure 8.21. Geometry of the overlapped sound absorptive material on the barrier
edge.
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Figure 8.22. Comparison of insertion loss at the midpoint of the barrier height. ‘©’:
straight barrier with 10.16 cm wide and 2.54 cm thick fiberglass with 5.08 cm

overlap with the rigid barrier; ‘�’: straight barrier with 7.62 cm wide and 2.54 cm
thick fiberglass with 2.54 cm overlap with the rigid barrier.
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Figure 8.23. Comparison of insertion loss at the 17.78 cm off the midpoint of the
barrier height. ‘©’: straight barrier with 10.16 cm wide and 2.54 cm thick fiberglass
with 5.08 cm overlap with the rigid barrier; ‘�’: straight barrier with 7.62 cm wide

and 2.54 cm thick fiberglass with 5.08 cm overlap with the rigid barrier.
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Figure 8.24. Configuration of various barrier designs.
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Figure 8.25. Comparison of insertion loss at the midpoint of the barrier height. ‘©’:
basic barrier with 5.08 cm extension; ‘�’: T-shape barrier with 5.08 cm wide cap,
‘�’: straight barrier 7.62 cm wide sound absorptive treatment (2.54 cm overlap).
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Figure 8.26. Comparison of insertion loss at the 5.08 cm off the midpoint of the
barrier height. ‘©’: basic barrier with 5.08 cm extension; ‘�’: T-shape barrier with
5.08 cm wide cap; ‘�’: straight barrier 7.62 cm wide sound absorptive treatment

(2.54 cm overlap).
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Figure 8.27. Comparison of insertion loss at the 10.16 cm off the midpoint of the
barrier height. ‘©’: basic barrier with 5.08 cm extension; ‘�’: T-shape barrier with
5.08 cm wide cap; ‘�’: straight barrier 7.62 cm wide sound absorptive treatment

(2.54 cm overlap).
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Figure 8.28. Comparison of insertion loss at the 15.24 cm off the midpoint of the
barrier height. ‘©’: basic barrier with 5.08 cm extension; ‘�’: T-shape barrier with
5.08 cm wide cap; ‘�’: straight barrier 7.62 cm wide sound absorptive treatment

(2.54 cm overlap).
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Figure 8.29. Comparison of insertion loss at the 20.32 cm off the midpoint of the
barrier height. ‘©’ basic barrier with 5.08 cm extension; ‘�’: T-shape barrier with
5.08 cm wide cap; ‘�’: straight barrier 7.62 cm wide sound absorptive treatment

(2.54 cm overlap).
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9. CONCLUSION

The application of the boundary element method to the analysis of the noise barrier

problem has been considered here, along with associated experimental work.

First, the boundary element model for the simple geometry of a circular disk was

verified against experimental results. It was shown that varying the shape of the

disk geometry alters the insertion loss at particular receiver locations, a finding that

was verified using the numerical model. However, the shaped disks did not result

in any significant advantage compared to the uniform disk when the sound power

in the shadow region was used as a metric for barrier performance rather than the

single point insertion loss. It was suggested as a result of these findings that the

performance of a barrier having a relatively complicated geometry can be quantified

most effectively by using a sound power based metric.

Scale models that were intended to represent highway noise barrier applications

were considered next. A two-dimensional analysis was first performed to study the

limitations of the widely used diffraction-based model. The performance of the finite

length barrier was studied both with a boundary element model and with experiments.

A post-processing technique that involves windowing in the time domain and filter-

ing in the frequency domain was successfully implemented to eliminate experimental

errors.

Following on from that work, the performance of various barrier configurations

was compared. The performance of T-shaped barriers was compared with that of the

equivalent straight barriers with extended height. It was found that the T-shaped

barrier does not give a significant improvement over the simple extended barrier.

The use of acoustical treatment on the top of the T-shape was also examined. It was

found that the use of sound absorptive material results in improved insertion loss,
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but mostly at high frequencies.

Finally, the use of sound absorptive material to extend the barrier height was

considered as were the effect of positioning and overlap. It was found that sound

absorptive treatments placed on the barrier edge are very effective at increasing the

insertion loss at receiver locations deep in the shadow zone behind the barrier. It

was illustrated that a glass fiber extension was more effective than a rigid extension,

for example. In contrast, the use of complex geometries built of rigid materials, a

T-shaped barrier, for example, did not result in a significant enhancement of the noise

barrier performance.

The development of more sophisticated numerical modelling tools is required to

predict the performance of noise barriers when the sound absorptive treatments with-

out hard backing are applied to otherwise rigid barrier structures.
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